#### Micro CHP in Europe

Jeremy Harrison EA Technology



#### Definition of micro CHP

- "A direct replacement for a boiler in a hydronic heating system, which simultaneously produces heat & electrical power"
- G83/CEN technical definition
  - "generator with rated output of ≤16A per phase"
- DCHP functional definition
  - "one unit per home"



### Micro CHP concept



Micro CHP replaces boiler in conventional central heating system



# Requirements for micro CHP

- noise, vibration
- size, weight
- capital cost
- service cost/intervals
- heat/power ratio
- running hours





# Potential UK impact of DCHP

- 15-22GWe installed capacity
- equivalent to nuclear capacity (not output)
- 12 million suitable homes in UK
- 67 million tonnes CO<sub>2</sub> reduction annually
- ~250,000 p.a by 2010
- 1,000,000 installed systems by 2010
- ~2 million tonnes CO<sub>2</sub> p.a. by 2010



# Potential EU impact of DCHP

- 60GWe installed capacity
- equivalent to nuclear capacity (DE, UK)
- 40 million suitable homes
- 200 million tonnes CO<sub>2</sub> reduction annually
- 1 million installations p.a by 2010
- 15 million tonnes CO<sub>2</sub> p.a. by 2010



#### Impacts on Distribution Networks

- Loss of revenue
- Additional effort
  - Incentives
- Design & operation of network
- Standard of supply
  - CI/CML (DCPR)
  - Power quality
  - Security of supply (P2/6)
- Safety



#### Connection to network

- Previous system (G59) too complex
- Type approved products/interfaces
- Certified installers
- Notification
- Progress so far
  - UK draft engineering recommendation (G83)
  - European (CEN) workshop agreement
  - CENELEC in progress



# Connection to network - who pays?

- DNO = all customers
  - natural route for natural monopoly?
  - public service
- Individual micro CHP operators
  - highly complex
- All micro CHP operators
  - equitable
  - incorporate in tariff



#### Connection to home

- Thermal: "drop-in" replacement
- Electrical
  - Fusing
  - Connection to ring main (UK)
  - Connection to cooker spur (or other high rated spur)
  - Avoiding nuisance trips network support
- Metering & control
  - Integration with controls (load management)
  - Remote metering



#### Economic case for micro CHP

- marginal investment cost recovered by value of generation +/- marginal gas consumption
  - marginal cost depends on production cost
  - generation depends on running hours
  - marginal gas consumption depends on technology (heat:power ratio,η<sub>t</sub>)
- importance of "spark spread" future price volatility
- value of location (time & space)



# Cost/value recovery



- Metering
- Settlement
- CCL exemption
- ROC accreditation
- Emissions Trading
- Balancing market/volatility
- Aggregation of export



### **Energy trading options**



#### Metering

- Existing + assumption
- 2-way (import/export)
- Half-hour
- Smart-settlement
- Net
- Settlement
  - Profile (diversified)
  - Aggregation



#### Profile settlement: supply





# Coincidence of high cost with micro CHP generation (domestic)





# Characteristics of microgeneration

**POWER: HEAT & EFFICIENCY** 

|           | kWe:kWt | η el.  | η total |
|-----------|---------|--------|---------|
| Stirling  | 1:3-1:8 | 12-30% | 90-95%  |
| Fuel cell | 1:1-1:3 | 20-35% | ~80%    |
| ICE       | 1:2-1:3 | 25-35% | 85-90%  |



# Technology status: ICE

- Senertec (5.5kWe)
- Ecopower (5kWe)
- Cogenics (3-5kWe)
- Honda (1kWe)







### Technology status: Fuel Cells



VAILLANT (5kWe) PEM

**EUROPEAN FUEL CELLS** 

(1.5kWe) *PEM* 

Johnson Matthey *PEM* 

Sulzer HEXIS (1kWe) SOFC



# Baxi technologies fuel cell







# Technology status: Rankine cycle

- Cogen Micro (2.5kWe/12kWt)
- Inergen (1kWe/10kWe)
- Climate Energy
- Enginion





# Technology status: Stirling engine

- Whispertech (1kWe/8kWt)
- BG Microgen (1kWe/45kWt)
- Sigma (3kWe/9kWt)
- ENATEC (1kWe/45kWt)
- SIG (1kWe/?)





#### SE micro CHP economics\*

CONVENTIONAL BOILER
20 000kWh THERMAL DEMAND

COST ANNUAL ELEC BOILER

1 kWe SE MICRO CHP UNIT 4 500kWh ELECTRIC DEMAND



<sup>\*</sup> marginal cost basis-end user economics



# EA Technology field trials

- 1990 feasibility study
- 1999 laboratory trials & evaluation
- 2000 sheltered trials (5 units)
- 2001 alpha trials (20 units)
- 2002 beta trials (30 units)
- 2003 "commercial" trials?





#### 2002-2003 TRIALS

- 30 installations
- 15 Ipswich area (E)
- 15 Chester area (NW)
  - 10 existing
  - 5 new
- Mix of sizes, ages, constructions and occupancy

























#### Example trial house

- 138m² total floor area
- three storey living on mid floor
- built 1998
- insulation to Building Regulations
- usage pattern
  - continuous occupancy
  - copious showers





# Original heating system

- Wall-hung boiler in kitchen (mid-floor)
- Y-plan (3-port valve)
- Single zone
- 7-day programmer
- room/cylinder thermostat





# Micro CHP system

- MK III WhisperGen
- Directly below boiler in kitchen
- Integral G83 LOM protection
- Controlled from existing programmer (run signal)
- Remote data logging and on-line diagnostics





### **Economics** (nominal)

Annual gas bill
 £ 550

Annual electricity bill
 £ 450

Annual gas consumption kWh 35 000

Annual space heat kWht 18 000

Annual DHW kWht 6 000

Annual electric consumption kWh 6 000

Generation kWhe 3 400

Projected savings £ 150-200



#### **Environmental comments**

- will target CO<sub>2</sub> savings be achieved?
  - higher mean internal temperature (MIT)
  - more likely to mitigate increase in energy demand than actually reduce it?
- target market (not fuel poor)
  - % savings
  - comfort factor





#### Field trial conclusions

- Raises awareness of pre-existing shortcomings
- Anticipated energy savings may lead to higher comfort demands and consequently lower savings
- Need to target customers carefully and give clear message about what micro CHP will or will not do for them
- Excellent service support essential



### What happens next?

- Live market test
  - partnership with housebuilder
- 400 systems to be sold in 2003
- New-build with thermal store
  - improves performance
  - simplifies installation
- Need for ongoing monitoring
  - profile settlement (economic)
  - SEDBUK, EEC etc (environmental)



### Compliance & incentives

- Mandatory standards
  - Product (CE marking, applicable directives)
  - Network connection (G83, CWA)
  - Domestic connection (IEE, SEDBUK)
- Desirable "passport to benefits"
  - CHP QA
    - CCL exemption
    - Enhanced capital allowances
  - SEDBUK/EEC
    - EEC eligibility
    - Renewables obligation eligibility?



#### **Obstacles**

- Technical standards and procedures
  - G83 is great simplification
  - environmental accreditation
- Metering, settlement and trading
  - OFGEM currently seeking appropriate solutions
  - no problem if 100% auto-consumption
- Skills shortage
  - across industry
  - SBGI working group
- Implications for DNO, suppliers etc.



# Things to avoid

- Complexity CHPQA
- Discriminatory charging
- Net metering
  - Unsustainable
  - Encourages lazy thinking & inefficiency
  - Lame duck support
  - Raises (understandably) incumbent hostility
  - Does not reflect true micro CHP value
- Inaction



#### Conclusion

- Micro CHP is economically viable now
- Emerging technologies and new products will make micro CHP even more costeffective
- Government incentives will further enhance CHP economics
- Simplified connection and trading will remove technical and economic barriers

